
Implementation of PPO for Multi-Agent Path Finding with Dynamic Obstacles

Jinwoo Park, Jeonghwan Kim, Tae Kyung Park

Abstract—Multi-agent path finding (MAPF) is a fundamental
problem in the field of robotics where multiple agents have to
navigate to their own goals without collisions in a confined space.
This problem is apparent in many real world applications such
as automated warehouses. We propose a reinforcement learning
based method for learning decentralized policy for MAPF.
Specifically, we propose a synchronized proximal policy optimiza-
tion (PPO) algorithm to obtain a stable yet efficient training.
Synchronization of weight of agents in the same environment
along with PPO loss helped mitigating data inefficiency issue
exhibited in our baseline MAPPER [1] and further stabilized the
training. The effectiveness of our algorithm was verified against
the baseline using average rewards, collision and success rates.

Index Terms—multi-agent path finding, reinforcement learn-
ing, proximal policy optimization, decentralized policy

I. INTRODUCTION

Multi-agent path finding (MAPF) aims to generate collision-
free paths for multiple agents under constraints such as partial
observation, dense population, highly structured and dynamic
environment. MAPF can be classified into two categories:
centralized and decentralized. Centralized method runs opti-
mization using full information about the global environment.
Such method requires high network connection with immense
computing power because it has to process information coming
from multiple working agents in densely populated environ-
ments. In order to mitigate these issues, decentralized methods
have gained popularity where each agent makes its own
decision based on its local observation. This project focuses on
the decentralized MAPF where agents move toward their goals
without full observation of the environment with dynamic
obstacles.

Prior to reinforcement learning (RL), conflict-based search
(CBS) [2] methods were dominant in the MAPF literature.
CBS has been addressed for its disadvantage regarding the
exponential runtime to the number of conflicts. We therefore
propose a reinforcement learning based method for solving
the decentralized MAPF, namely Multi-agent path planning
with proximal policy optimization (MAPFO). Our work is
a direct succession of the A2C based agent, MAPPER [1]
which we chose as our baseline. We stabilize the training with
synchronized agents and clipped surrogate loss [3] to achieve
performance gain.

In this project, we verify that our method of synchronized
PPO shows more stable learning and gains higher rewards and
success rates compared to the baseline MAPPER.

J. Park is with the Institute for Robotics and Intelligent Machines, Georgia Institute of
Technology, Atlanta, GA 30332 USA (e-mail: jinwoop@gatech.edu).
J. Kim is with the School of Electrical and Computer Engineering, Georgia Institute of
Technology, Atlanta, GA 30332 USA (e-mail: jkim3662@gatech.edu).
T. Park is with the School of Computer Science, Georgia Institute of Technology, Atlanta,
GA 30332 USA (e-mail: tpark97@gatech.edu).

II. RELATED WORK

A. MAPF with Reinforcement Learning (RL)

Many research efforts have been devoted to solve MAPF
with RL. PRIMAL [4] and its successor PRIMAL2 [5] com-
bine RL with imitation learning to solve this problem. Our
baseline MAPPER [1] implements A2C with evolutionary
update to learn a policy that is robust to environments with
dynamic obstacles. It is still challenging to use RL for MAPF
due to its nature of long-horizon episode with sparse rewards.
We follow a method proposed by MAPPER [1] to overcome
this issue by filling the gaps for sparse rewards with sub-tasks
and trying to follow the path generated by A*.

B. Proximal Policy Optimization (PPO)

It is shown in MAPPO [6] that on-policy reinforcement
learning in multi-agent settings can achieve sample efficiency
compared to that of the off-policy methods, and require
minimal hyperparameter tuning without any domain-specific
algorithmic modifications or architectures. They corroborated
that PPO-based methods indeed have outstanding performance
on various cooperative Multi-agent reinforcement learning
(MARL) environments. From the baseline MAPPER, we mod-
ified vanilla A2C loss to PPO loss and changed separated
policy to synchronized policy to mitigate issues caused by
abrupt evolutionary update.

III. METHOD

Our environment is derived from the baseline MAPPER [1].
The environment (dimensions of 20x24, 32x32, and 73x51)
contain agents, dynamic and static obstacles, and goal posi-
tions. An example of training environment of this paper is
depicted in Figure 1.

Fig. 1: Example of an environment.

A. Training environment

Each agent has a field of view (FOV) of 15x15 grid with it
being in the center. An agent receives receives observations: 1)
its previous positions, 2) position of other agents and dynamic
obstacles, 3) the weighted observed trajectories of other agents

within its FOV. In addition, each agent computes a waypoint
vector towards its goal.

The agent chooses an action from 9 discrete actions (i.e.,
N, NE, E, SE, S, SW, W, NW, or stay) where it can move to
the neighboring grid or stay in the current grid.

We calculate the reward (derived from MAPPER [1]) for
each step as

R = rs + rc + ro +λ r f + rg, (1)

where the value of each term is shown in Table I, pa ∈ R2,
and S= {pstart , · · · ,pgoal}.

Rewards Value
step penalty rs -0.1 (move) or -0.5 (wait)

collision penalty rc -5
oscillation penalty ro -0.3

off-route penalty weight λ 0.3
off-route penalty r f −minp∈S||pa−p||2

goal-reaching reward rg 30

TABLE I: Reward design

The maximum number of steps (max step) that an agent can
take in an episode is different for each agent. The max step
of an agent used in the training is the four times the length of
trajectory computed by the A*. This is to give enough steps for
the agent to explore and learn new policies while precluding
the exploitation of bad policies. An episode terminates when
all agents reach their goals or time step reaches the largest
max step of all agents. Each agent stops rollout after reaching
its goal.

B. Algorithm

The network architecture of our actor-critic agent follows
the baseline MAPPER where the actor and critic network
shares the observation encoding part of the network. We use
CNN layers and MLP layers to encode local 2D observation
and waypoint vector respectively. The outputs of the CNN and
MLP layers are concatenated before fed into additional MLP
layers to create a single observation encoding. The observation
encoding is fed into an actor network and a critic network to
output action probability and state-value.

We synchronize the policy for all agents in the environment.
Each agent performs rollout based on single synchronized
global policy so that data collected from all agents count
towards the synchronized policy. We use clipped surrogate
loss [3] to stabilize the training by following suggestions of
MAPPO [6]. Our method distinguishes from vanilla A2C and
PPO in that our method synchronizes the weights of multiple
agents acting in the same environment while the vanilla A2C
and PPO methods synchronize the weights of multiple workers
performing rollouts in separate environments. Our algorithm
MAPFO is depicted in Algorithm 1.

IV. EXPERIMENTS AND RESULTS

We experiment our algorithm on various environments by
changing number of agents and obstacles. We compare success
rate, collision and average reward of our method with the
baseline MAPPER [1], which is a modification of Advantage

Algorithm 1 MAPFO

Initialize global agent weight Θ for actor-critic πΘ, VΘ

shared by N agents
repeat

// Data collection
for t = 1, . . . ,max step do

// Rollout N agents based on synchronized policy πΘ

for i = 1, . . . ,N do
ai

t ∼ πΘ(oi
t ;Θ)

end for
Execute action at = [a1

t , . . . ,a
N
t] and observe

(r1
t ,o

1
t+1), . . . ,(r

N
t ,o

N
t+1)

end for
Compute reward-to-go R̂ for each agent
Compute advantage estimate Â for each agent using VΘ

D = {} // Trajectory data for all agents
for t = 1, . . . ,max step do

for i = 1, . . . ,N do
D = D∪{(oi

t ,a
i
t ,r

i
t ,o

i
t+1, Â

i
t , R̂

i
t})

end for
end for
// Parameter Update
for epoch = 1, . . . ,nepochs do

for mini-batch k = 1, . . . ,K do
dk← mini-batch from D
Adam update Θ on clipped surrogate L(Θ) with dk

end for
end for

until Converges

Actor Critic (A2C) combined with evolutionary selection.
Each agent in the baseline has its own neural network policy
function which is updated with its own rollout. After desig-
nated number of gradient updates, the evolutionary selection
step proceeds. The best performing agent is selected based on
the accumulated rewards of the rollout. The selected agent’s
parameter is copied to each agent with probability proportional
to the difference between rewards of the agent and the best
performing agent.

1) Stability: Figure 2 shows training result for environ-
ments with 8 agents and 10 dynamic obstacles. From success
rate graph on the left, we can see that the proposed algorithm–
MAPFO–performs significantly better than the MAPPER in
this environment. The graph on the middle shows the col-
lision rate of agents, which is the ratio of agents who had
collision during its episode rollout. Compared to MAPPER,
our method shows stable training behavior with the average
reward increasing gradually. One cause of the instability of the
baseline is due to the evolutionary update of unsynchronized
agents, leading to drastic changes in the agents’ policy. The
synchronous update of our method provides better stability.

2) Curriculum Training: When increasing the number of
agents and obstacles, the highly congested environment hin-
ders agents from finding paths to their goals. Inspired by the

(a) Success Rate (b) Collision Rate (c) Average Reward

Fig. 2: Comparison between MAPFO and baseline MAPPER on 8 agents with 10 dynamic obstacles environment

(a) Success Rate (b) Collision Rate (c) Average Reward

Fig. 3: Comparison between MAPFO and baseline MAPPER on 30 agents with 10 dynamic obstacles environment. The agents are initialized
with weights pretrained from 4 agents with 10 obstacles environment

curriculum learning paradigm, we first train the policy in a
less congested environment with fewer agents and then train
the agents in more congested environment. Figure 3 shows a
result of this approach, where agents are trained to perform
path finding in environments with 30 agents and 10 dynamic
obstacles. Here, the both MAPFO and MAPPER initialize their
training with the converged weights obtained from 4 agent and
10 obstacle scenario.

Although our method managed to gain high success rate
in the beginning, it failed to converge. After 800 episodes,
it began to perform poorly with high collision rate while
the MAPPER performed consistently. We further discuss this
phenomenon in the discussion section.

3) Robustness: We test the robustness of our method by
modifying the learning rates. We train our agents on envi-
ronments with 8 agents and 10 obstacles, with three different
learning rates (0.0001, 0.0003, 0.0009) and draw mean and
variance of the success rate, collision rate, and average reward
on Figure 4. We can see from the success rate graph that
the performance variance of our method is smaller than that
of MAPPER. Although the collision rate of the baseline
MAPPER is higher than that of ours, we found out that
this was due to some agents in MAPPER refusing to move,
remaining stationary during the entire rollout.

agents # obs alg. success rate avg. reward # collision

4 10 A2C 0.93 (± 0.12) -26.2 (± 63.5) 13.1 (± 17.8)
PPO 1.00 (± 0.00) -21.0 (± 28.1) 4.2 (± 2.1)

8 10 A2C 0.94 (± 0.07) -72.6 (± 43.9) 7.9 (± 6.9)
PPO 0.99 (± 0.04) -22.6 (± 10.6) 6.0 (± 1.9)

10 10 A2C 0.85 (± 0.11) -103.4 (± 75.4) 11.5 (± 8.0)
PPO 0.96 (± 0.07) -39.4 (± 18.8) 7.6 (± 4.2)

30 10 A2C 0.97 (± 0.04) -24.5 (± 19.4) 11.9 (± 5.9)
PPO 0.95 (± 0.04) -33.7 (± 35.7) 11.1 (± 5.7)

30 70 A2C 0.98 (± 0.02) -9.8 (± 14.1) 14.7 (± 2.8)
PPO 0.99 (± 0.02) -8.6 (± 13.3) 16.0 (± 3.9)

TABLE II: Test time statistics in different environment settings.
The best performing (highest success rate) agent during training
was chosen for the evaluation. Agents in 30 agent environments
are trained from agents initialized with weights pretrained in the
environment with 4 agents 10 dynamic obstacles (first row).

V. DISCUSSION

The statistical results of MAPPER and MAPFO for various
scenarios are tabulated on Table II. They are tested using the
weights with highest success rate during the training sequence.
The mean and standard deviations of three performance
metrics are obtained through running 10 episodes for each
environment settings (different start and goal locations). We
observed that our algorithm show robust learning curves and
better performance compared to baseline, which corroborates
that our hypothesis – synchronized PPO learns more stably
(lower variance and positive learning slope) than A2C with

(a) Success Rate (b) Collision Rate (c) Average Reward

Fig. 4: Comparing robustness to learning rate between MAPFO and baseline MAPPER in 8 agents with 10 obstacles
environment.

evolutionary update– is valid. However, we also observed
a frailty of our algorithm in curriculum training which we
discuss in the following subsection.

A. Training

We found that our MAPFO algorithm fails to train well
with the full-batch update. Hence we used a mini-batch of
size 32 to enhance the performance of our algorithm. The
mini-batched update helped sparse goal-reaching rewards take
more effect during training and helped come out of the local
minima, making the training successful.

B. Limitations

We initially observed that our method cannot train fresh
in highly congested environment with high number of agents
and obstacles, specifically neither MAPPER nor our method
for scenarios with 20 agents and above struggled to learn.
Thus we implemented curriculum learning strategy. Despite
our method outperformed the baseline MAPPER in the freshly
training settings, we found in Figure 3 that it failed in the
curriculum setting. Although the success rate and average
reward improved in the first couple hundred episodes, it
increased the collision rate, driving the agent’s policy to fall
in a pitfall and perform poorly. Our method was not robust
enough to withstand this drastic change in environment, while
MAPPER survived with help of evolutionary update. We
believe this issue can be solved by giving a better curriculum
or by implementing automated approach to gradually increase
the difficulty of the learning without expert supervision.

VI. CONCLUSION

This paper proposes a deep reinforcement learning approach
for solving decentralized multi-agent path finding problem
where agents find paths to the goals using local observation
in dynamic environments.

We propose an algorithm where agents in the environment
have the same policy and all trajectories contributes to the final
policy hence increasing the sample efficiency. Combined with
the clipped surrogate loss in PPO, we stabilize our training
and mitigate the brittleness to hyperparameters.

We verified from our results that our method is more stable
and less brittle to the learning rates. For highly congested
settings with increased number of agents, we verified that
giving a curriculum: train the agents first in low-congestion
environment, helps the training. Although we have obtained
an agent that outperforms the fully trained MAPPER by early
stopping, our method soon diverged afterwards as the collision
rate increased.

As a future work, other techniques such as decaying learning
rate, Generative Advantage Estimator [7] or value and feature
normalizations could further improve the performance of our
PPO based method.

VII. ACKNOWLEDGMENT

We genuinely appreciate Zuxin Liu for providing the source
code of MAPPER.

REFERENCES

[1] Z. Liu, B. Chen et al., “Mapper: Multi-agent path planning with evolu-
tionary reinforcement learning in mixed dynamic environments,” in 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2020, pp. 11 748–11 754.

[2] S. K. T. Huang and B. Dilkina, “Learning to resolve conflicts for multi-
agent path finding with conflict-based search,” Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), 2021.

[3] J. Schulman, F. Wolski et al., “Proximal policy optimization algorithms,”
arXiv preprint arXiv:1707.06347, 2017.

[4] G. Sartoretti, J. Kerr et al., “Primal: Pathfinding via reinforcement and
imitation multi-agent learning,” IEEE Robotics and Automation Letters,
vol. 4, no. 3, pp. 2378–2385, 2019.

[5] M. Damani, Z. Luo et al., “Primal2: Pathfinding via reinforcement and
imitation multi-agent learning - lifelong,” IEEE Robotics and Automation
Letters, vol. 6, no. 2, pp. 2666–2673, 2021.

[6] C. Yu, A. Velu et al., “The surprising effectiveness of ppo in cooperative,
multi-agent games,” 2021.

[7] J. Schulman, P. Moritz et al., “High-dimensional continuous control us-
ing generalized advantage estimation,” arXiv preprint arXiv:1506.02438,
2015.

